概率空间的定义为(Omega, F, P)。在概率图模型中,一个问题是从已知的抽样中估计概率测度P。通常,有两种估计的方法:一是最大似然估计,一是贝叶斯估计。比如,投硬币的问题,30上,20下,就估计上的概率为3/5,这样的估计可以使似然度最大。而贝叶斯主义者认为还应该有更多的先验知识,比如我们早就知道这样的概率取值为1/2的概率相对最大,加入这样的知识后运用贝叶斯公式估计出来的概率就与最大似然法的结果不同。可以想像当先验知识可靠的时候,这样的估计会更准确的。
形式化一点,投硬币的概率空间为({正, 反}, {{正}, {反}},{(正, p), (反, 1-p)})。最大似然直接在这样的空间上估计p。而贝叶斯主义者将所有p决定的测度P看成是另一个Omega*,即概率本身是另一个概率空间中的一个采样。这另一个空间有自己的另一套测度P*。比如投币问题中Omega*是所有可能拿到的硬币,显然P*会告诉我们不同的硬币会有不同的p。如果这样的P*能够很好的得到,那么这样估计的概率会更有说服力。
那么我想做一些引申,既然一个正反面的概率测度P可以是一个更大的空间中依P*的采样,那么P*本身为什么不是从另一个更大空间中采样出来的呢。比如考虑温度、湿度、表面粗糙度、重力加速度等条件,会得到另一个概率空间Omega**,不同的环境条件决定了各个硬币正面概率的变化,故是这样的空间采样了P*。如果我们同样能够清晰描述P**,这显然也是合理且有说服力的。
最大似然的模型,可以叫做零阶模型(名字是我自己杜撰的),而贝叶斯方法的模型可以叫做一阶模型,用同样的方法可以产生二阶、三阶以及更高阶的模型。前提是我们能够清晰的描述这些概率分布是如何从另一个概率分布中采样出来的。
一个问题是,这样的过程可以无限进行吗,任何实际的概率空间都可以这样吗,这样的过程都合理且有意义吗。
我这里想说的是,至少有一种实际的测度,不需要再做这样的泛化了。这样的测度就是“宇宙的本质规律”,它赋予任何实在的事件以概率,而它不再是根据某个P*采样出来的了。解释有两点:第一,这些规律有唯一的取值,如果某个规律每次测量会变化,那么必有更高的不变的规律解释这样的变化,从而前者不是“本质规律”,后者才是;第二,如果非要假想有另一种赋值的宇宙规律,而由于我们只可能知道P下的一切,对这样的P*我们不可能有任何认识,所以这样的泛化是无意义的。
形而上学会讨论可能宇宙,会讨论或然宇宙中是否有必然存在物,会讨论宇宙的常数是被如何精巧的设定以至于很幸运地产生了现在的宇宙的样子。我想得出的结论是,除了现在的宇宙外我们一无所知,连宇宙之外的这个规律P*都不知道哪怕一点点,又如何谈论它和他所测量的空间Omega*的性质呢。在这个范围内的任何设定都不会与现实宇宙中的任何现象概率相关,在概率图中他们被我们“宇宙的本质规律”这个节点阻断了。可能有可能宇宙,但我们的宇宙与这个宇宙无关。
没有评论:
发表评论